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Ahstrect-Each regular surface can be considered as a sum of isosceles triangles of different apex angle 
(6). Triangular, square, hexagonal and circular plates consist of three, four, six and an unlimited number 
of triangles of apex angles E = a/3, a/4, n/6 and -0”. respectively. Simplified theoretical consideration for 
extracted repeated fragments of the surface, describing it in the form of triangles, suitable for any polygon, 
has been performed. Two models of fluid flow over heated surfaces are proposed. The fluid flow direction 
in the first model was perpendicular to the leading edge and stream lines are parallel to each other. In the 
second one it has been assumed that fluid flows from the leading edge concentrically towards the apex 
angle of the considered triangular surface. In both models free boundary layers transform into plumes 
above the center of the plates. The solutions of these models are presented in the form of dimensionless 
Nusselt-Rayleigh relations with the function of apex angles as a polygon parameter. The results of 
experimental investigations of horizontal isothermal triangular, square, hexagonal and circular plates are 
presented. The free convection heat transfer experiments and visualization were carried out using plates 

of the same diameter d = 0.07 m of the circle inscribed in polygon and glycerine as the test fluid. 

INTRODUCTION 

FREE CONVECTIVE flow above the upward-facing hori- 
zontal surfaces is interesting for industrial appli- 
cations, hence many papers have been published on 
this subject [l-9]. However, almost all of them have 
treated only the cases of horizontal semi-infinite plates 
[l-S] or sometimes rectangular and circular plates of 
finite dimensions [69]. In many practical applications 
configurations of heated or cooling surfaces other 
than those mentioned above exist. 

This work is a summary of investigations carried 
out by the authors concerned with convective heat 
transfer from polygonal surfaces [ 1 O-1 21. 

MODELS OF FREE CONVECTION FROM 

POLYGONS 

The analysis of convective fluid flow above a square, 
rectangle and disk expressed by Al-Arabi and 
El-Riedy in ref. [6] in the form of stream lines gives 
evidence that the boundary layer forms at all cir- 
cumferential edges (leading edges) and fluid flows per- 
pendicularly to edges and parallel to themselves. This 
pattern of fluid flow is presented schematically in Fig. 
l(a) and it is called the parallel model of free con- 
vection heat transfer. This model of fluid flow is valid 
for most of the plate shapes (triangular, square, rec- 
tangular, pentagonal, hexagonal.. .). The exception 
to the rule is the fluid pattern above a round horizontal 
plate. In this case fluid flows not parallel to themselves 
but concentrically. 

By the analogy the model of concentrical fluid flow 
can also be valid for the other configuration of plate 

shapes. This flow pattern, proposed for consideration, 
is shown in Fig. l(b) and it is called a concentrical 
model of free convective heat transfer. In Fig. 1 the 
change of the magnitude of polygon surfaces in 
relation to the characteristic dimension used is shown. 
The constant diameter of the circle inscribed in poly- 
gons (d = const.) is in Fig. 1 (a) and the diameter 
(D = const.) of the circle circumscribed on polygons 
is also indicated (Fig. l(b)). This method of assump- 
tion of the characteristic length has no influence on 
the phenomenon mechanism. 

Boundary layer transformation into buoyant 
plumes, in the first model, take place above bisecting 
lines. Next, plumes join together above the center 
of the plate. In the second model, boundary layer 
transforms above the center of the plate into the 
plume. The center line of these axially symmetric 
plumes in these two models are perpendicular to the 
surface and overlap with the center points of all poly- 
gons considered. 

From the analysis of flow patterns presented in 
Fig. 1 it is obvious, that each regular polygon can be 
considered as a sum of triangles of characteristic apex 
angles (E). Triangular, square, pentagonal, hexagonal 
and circular plates consist of three, four, five, six and 
an unlimited number of triangles of apex angles 
E = n/3, a/4, rc/5,46 and *O, respectively. 

It has been assumed that the phenomenon of con- 
vective heat transfer can be considered on a rep- 
resentative element of the whole polygonal surface, 
instead of the whole surface. The solution obtained in 
the form of the mean value of heat transfer coefficient 
for triangular fragment of the plate is valid for the 
whole polygon. 
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NOMENCLATURE 

a thermal diffusivity, L/(c,p) Ra, Rayleigh number, g/ATR’/(va) 
a characteristic length, A/P = D/4 Ra,, Rayleigh number, g/?ATd3/(va) 
A area of heated plate S surface of isosceles triangle separated 
A cross-sectional area in boundary layer from regular polygon 

Ak control surface of heating surface T temperature 

c!J specific heat at constant pressure of the W velocity 
fluid x length of the boundary layer 

C,. C,, coefficients .K horizontal coordinate to the surface 
d diameter of the circle inscribed in the Xl boundary of integration of equation (17) 

polygon R - cos (c/2) +x - ctg (42) 
D diameter of the circle circumscribed on Y vertical coordinate to the surface 

the polygon ,_ horizontal coordinate to the surface 

9 gravitational acceleration cl boundary of integration of equation (17) 
h thickness of the bakelite between copper R * sin (42). 

plates 
i specific enthalpy Greek symbols 
L characteristic length, D/2 heat transfer coefficient 
m mass flux ; coefficient of volumetric expansion 
Nu,, NM~ Nusselt numbers, ED/~, ad/ji 6 thickness of boundary layer 

; 

perimeter of the heated plate A difference 
heat flux apex angle of the triangle 

r radius of inscribed circle ; dimensionless temperature 
R radius of circumscribed circle i thermal conductivity 
Rl modified radius considered on surface S v kinematic viscosity 

(Fig. 3). R - cos (e/2)/cos (42 - 6) P fluid density 

Ra, Rayleigh number, g/YATD3/(va) 4 angle. 

(b) 

FIG. I. Theoretical models of convective flow patterns above heated plates of different shapes : (a) with 
parallel stream lines, (b) with concentric stream lines. 
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SIMPLIFIED ANALYTICAL SOLUTION may be evaluated as 

The solution presented below is based on the vel- 

0 = (T,- T,)/V,- T,) = (1 -Y/W. 

ocity of the fluid flow calculated for the plane flow 

(1) 

pattern (ref. [9, equation (2)]) with simplifying 
assumptions typical for free convection: the fluid is 
incompressible and the flow is laminar ; inertia forces 
may be ignored in comparison with the viscous 
forces; in the boundary layer region, above a tri- 
angular element of polygon IV, >> IV, ; the physical 
properties of the fluid in the boundary layer and in 
the undisturbed region are constant ; temperature of 
the surface (T,,,) is constant; thicknesses of thermal 
and hydraulic boundary layers are the same ; the tem- 
perature profile in the boundary layer is described not 
by the direct form of Fourier-Kirchhoff equation, but 

by 

ae C-J 2 

ay y=o= -6’ 

Substituting equation (9) into equation (8) and 
equating the result with equation (7), one obtains 
dependence ( 10) 

;*p.c;d.d(A. @‘,) = dA,. (10) 

Substitution of equation (3) in equation (10) gives 

432.v.a 
6.d(A.6’.d6/dx) = SBBT*dAk. (11) 

With the radius (R) of the circle circumscribing the 
polygon as the characteristic dimension the Rayleigh 
number is given by 

Ra = g-B-AT-R3 
. (12) . .._ 

The quasi-analytical solution of Navier-Stokes 
YU 

equations with dependence (I), presented in ref. [9] in Substituting equation (12) in equation (11) one 
the form of the local and mean velocity in the bound- obtains : 
ary layer, for horizontal isothermal surface is 432. R3 

6*d(A*6’*dLj/dx) = Ra.dA,. (13) 

Solution of the nonlinear equation (13) depends on 

(2) 
the assumed model of the fluid flow and it is different 
for each model. 

6 s W, * dy = 
g.jl.AT.6’ d6 

(3) 
0 72v ‘dx’ MODEL WITH PARALLEL STREAM LINES 

where (dh/dx) is the increase of the boundary layer In this model (as one can see in Fig. 2), the flow is 
thickness along the path of its growth. one-dimensional and plane, so the cross-sectional area 

The change in mass flow intensitv is and the control surface are (A = dz - 6) and 

dm = d(A. @‘x.p), 

where A is the cross-sectional area of the boundary 
layer. 

(4) (dAk = dz* dx) implying that equation (13) has the 
form : 

432 - R3 
6*d(?i3.d6/dx) = Ra.dx. (14) 

The amount of heat necessary to create this change 
in mass flux is 

dQ = Ai*dm = p.c;(T,-T,).d(A.~,~). (5) 

Substitution of the mean value of the temperature 

(,,,=g.~AT.(l-~r.dy=~, (6) 

gives 

dQ = 1/3*p*c;AT*d(A* mx). (7) 

The heat flux described by equation (7) may be 
compared to the heat flux determined by Newton’s 
equation (8) : 

.AT*dAk, (8) 

where A, is the control surface of the heating plate. 
From simplifying assumption of the temperature 

profile inside the boundary layer (l), the dimen- 
sionless temperature gradient on the heated surface 

FIG. 2. Physical parallel model of convective heat transfer 
from a fragment of triangular form of censidered heated 

isothermal surface. 
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The solution of equation (14) see Appendix A, is 

S= 
4.478 _.X215. R3', 
&'!' (15) 

The value of heat transfer coefficients may be deter- 
mined from equations (8) and (9) as 

22 
CC=:. 

h 

The mean value of heat transfer coefficient is 

(16) 

(17) 

where boundaries of integration are : ~1 = R * 
cos (c/2)-xactg (c/2) and ~1 = R*cos(E/~). 

By substitution of (15) in equation (17) the Nusselt- 
Rayleigh relation for the convective heat transfer for 
an isothermal horizontal polygon is obtained 

0.930 
Nu, = cos2,5 (@jW Or 

1.228 
Nu, = 

cos2’5 (E/2) * Rah 5 (18) 

Relation (18) is the solution obtained for assumed 
parallel fluid flow describing free convective heat 
transfer from any horizontal, isothermal and regular 
polygon. For the limiting case of regular polygon- 
round horizontal plate (E => 0)-the solution (18) has 
the form 

NuR = 0.930Ray5 or Nun = 1.228Raz’. (19) 

MODEL WITH CONCENTRIC STREAM LINES 

In this model with concentric stream lines (see Fig. 
3) the cross-sectional area and the control surface 
are A = r - 6 - de and dAk = r * dr - de, respectively, and 
equation (13) has the form : 

The solution of nonlinear equation (20), presented 
in Appendix B, has the form 

6= 
2,457. R3/4jR17:3_r7'3)1!4 

Ra”’ r1’3 (21) 

where R 1 = R. cos (s/~)/cos (s/2 - 4) is the modified, 
from circle to triangle, radius of the surface considered 

(S). 
The mean value of heat transfer coefficient is 

(22) 

By substitution of dependence (21) to equation (22) 
the Nusselt-Rayleigh relation for the convective heat 

k-R l=R cos cl2lcos (&/2-0) J 

FIG. 3. Physical concentric model of convective heat transfer 
from a fragment of triangular form of considered heated 

isothermal surface. 

transfer from an isothermal horizontal polygon is 
obtained 

3.256. Rak 5 
Nu, = ___-.- 

R sin (E) 

cl RI s s f'3 

. . 

0 
" (RI,,3_r7.')i;i.dr.d~. (23) 

The solution of integral in equation (23) is 

(24) 

Introducing (24) into (23) gives 

~ 1.860. Rak” ‘:’ 
NuR = 

s 

cos7j4 (~/2) 

sin (E) ’ o cos’i4 (E/2 - f#l) * d4, 

- 2.455. Rai5 
Nu, = 

~0s”~ (~/2) 

sin (E) cOs7~4(E/2-~).d~. (25) 

The integral in Nusselt-Rayleigh relation (25) can 

be solved numerically only. 
For the limiting case-round plate-the solution of 

the concentric model of the fluid flow is quasi the same 
as for the parallel model (relation (19)) 

NM, = 0.930Rajj’ or Nu, = 1.227Rak”. (26) 

Instead of the diameter (D) of the circle cir- 

cumscribing the polygon, one can use the diameter 
(d) of the circle inscribed in the polygon as the charac- 
teristic linear dimension. Because the relation between 
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these two dimensions is D =d/cos (c/2), it implies that 

Nud = C,~Ra~~5~~~~2’5(~/2) = Cd-Raj5, (27) 

where C, = Nu,/RaAl’. 

For the model of fluid flow with parallel stream 
lines C, = 1.228/~0~~‘~(~/2), according to equation 
(17) and from equation (28) it is obvious that 
C, = 1.228 = const. 

For the model with concentric stream lines 
C, = 1.228 is valid for round horizontal plates only, 
because D = d. 

VERIFICATION OF THE ANALYTICAL 

SOLUTION 

Results obtained for a round horizontal plate 
(equation (19)) or for a square plate can be compared 

with theoretical and experimental results published by 
other authors. About the other shapes of heating 
plates (triangle, pentagon. hexagon.. .) no infor- 
mation has been found. Because of the differences 

between the characteristic lengths in Nusselt- 
Rayleigh relations the results could not have been 
directly compared. Due to this, some of the dimen- 

sionless equations describing the convective heat trans- 
fer from a horizontal isothermal plate have been 
recalculated using the diameter as the characteristic 
length. 

The solution presented by Rotem and Claassen [1] 
for an infinite plate of a length of (L = D/2) and for 
(Pr >> 1) is 

Nu, = 0.767 * RaF5. Nu, = 1.012. Raj5. (28) 

Goldstein and Lau [13] used (a = A/P = D/4), as the 
characteristic length, where A is the area, P is the 
perimeter and D is the diameter of the heat trans- 
ferring surface. The numerical solution obtained by 
them for (Pr = 0.7) is 

NM, = 0.621 * Ru,~‘~, Nu, = 1.081 - Raz5. (29) 

Experimental results obtained by the same authors 
for square naphthalene plates in air (10 < Ra, < 

4.8 x 103) have the form 

Nu, = 0.746. Raii5, NuD = 1.299.RaJ5. (30) 

Experimental and theoretical results of convective 
heat transfer from rings with adiabatic plug published 

by Lewandowski et al. [8], expressed by Nusselt- 
Rayleigh relations, for the boundary case-horizontal 
isothermal disk-are 

NM, = 1.229 * Raz5 theory, (31) 

NuD = 1.127. Raj’ experiment. (32) 

A thin-layer approximation of an analytical- 
numerical solution of the natural convection above 
an isothermal heated disk of a diameter (D), obtained 
by Robinson and Liburdy [14] for (Pr = 0.72), is 

NuD = 0.982*GrL”, NuD = 1.049. Raa’. (33) 

Results of experimental study of heat transfer from 

an isothermal round plate approximated by Lewan- 

dowski et al. [IS] with the use of exponent (l/4) can 

be approximated also with the use of exponent (l/S) 

Nu, = 0.711. Raa4 or NM, = 1.127. Raj5. (34) 

Al-Arab; and El-Riedy performed an experimental 

study of natural convection from an isothermal plate 
of finite size (square, rectangular and circular) with 
the use of the condensation method [6]. Their 
exponents were (l/4) for the laminar and (l/3) for the 

turbulent range. For the Rayleigh number values close 
to Ra = lo5 experimental points may be also approxi- 
mated by the dependence with the exponent (l/S). The 
result of recalculation is 

Nu, = 0.70. Raz4 = 1.245. Ra”j. D (35) 

There is no information in the literature of free 

convection from horizontal triangular and hexagonal 
surfaces so the comparison of the solution of con- 
vective heat transfer from polygons, with the solutions 

of other authors, equations (28)-(35). is limited to 

horizontal round, square or rectangular plates. This 
comparison shows that all results of other authors 

recalculated to the linear dimension (D) used in this 
work, fall within a - (7.2-27.7%) range. Hence it may 

be stated, by analogy, that the solution suggested in 
this paper is correct not only for the round, square 
and rectangular horizontal plate, but also for other 
polygonal forms of heating/cooling surfaces. 

EXPERIMENTAL PROCEDURE 

The experimental apparatus was a Plexiglas tank. 

The main dimensions of the tank were 0.4 m in diam- 
eter and 0.5 m in height. Horizontal heating plates of 
different shapes were fixed on the tank bottom. All 
tested plates (triangular, square, hexagonal and cir- 
cular) were of diameter d = 0.07 m, which is the diam- 
eter of the circle inscribed in the plate. Each heating 

plate had a layer structure and consisted, from the 
bottom, of polyurethane foam (heat insulator), lead 
plate (ballast), and flat electric heater covered by the 
heating plate. The heating plate also had the layer 
structure consisting of three parallel plates, two cop- 
per plates with bakelite layer between them. 

The heat flux from the heater inside the device was 

transported through the bakelite layer between copper 
plates by conduction. Three thermocouples were used 

to measure the temperature of the upper copper plate 
and three of the lower copper surfaces. Each ther- 
mocouple was soldered into holes with the tips 
about 0.001 m from the copper-bakelite interface. 
Four thermocouples were used to measure the bulk 
temperature of the fluid (dehydrated glycerin) at 
different levels in the tank. The inaccuracy of the 
temperature measurement did not exceed +O.l K. 
Establishment of different steady states was made by 
a cooling system located at the top of the tank. This 
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sytem consisted of a copper coil connected to a 
thermostat. 

During experimental runs the surface temperatures 

of the heating plate, at three points of lower and upper 
heating surfaces, bulk temperature of the fluid and 

the voltage (U) and current (I) of the heater inside 
the heating plate were measured. All these data were 
recorded during established steady states. Steady state 
was assumed to have been reached when the e.m.f. 
reading varied by less than 3 PV over a 10 min period. 
Details on the setup and on experimental procedure 

is given in refs. [l&12]. 
For the purpose of flow visualization two methods 

were employed. The first of them had a light-sheet 
and aluminum powder suspended in glycerine serving 

as tracer particles. In the second method of visu- 
alization the coloring agent from indelible pencil in 
the form of cylinders of 0.5 mm in diameter and of 

0.5 mm height were stuck along the leading edges of 
plates tested. Water was used as a tested fluid in the 

second method. 
Experiments were carried out in an hermetically 

closed vessel using dehydrated glycerin as the test 
fluid. The density, thermal expansion coefficient and 

dynamic viscosity of the liquid were experimentally 
determined after each experimental run. The thermal 
conductivity of the liquid was taken from the pub- 

lished data. 
The heat flux density transferred through the heat- 

ing plates was calculated according to formula : 

q = (3./h) CT,. - T, ) 1 (36) 

where L is the thermal conductivity of the heating 
plate of sandwich structure at the characteristic tem- 
perature (T,,, = (T,+ T,)/2), h = 2.72 mm is the 
thickness of the plate and T, and T,_ are the average 
temperatures of upper and lower surfaces of the heat- 
ing plate. 

The correlation of thermal conductivity (1) vs 
characteristic temperature (Tch) for heating plates (36) 
was estimated experimentally on a special stand con- 
structed especially for this purpose and is : 

1 =0.21036+8.092x 10m4*TC,. (37) 

EXPERIMENTAL RESULTS 

Using the least square method the experimental 
points obtained for various shapes of plates tested are 
correlated by Nusselt-Rayleigh relations : 

Nu, = 1.760. Raj’ triangle, (38) 

NuD = 1.512. Ral’ square, (39) 

NuD = 1.5 15 - Ra#’ hexagon, (40) 

NM, = 1.267. Ra$’ disk. (41) 

Experimental results presented in the form of aver- 
age Nusselt numbers (Nu,) vs Rayleigh numbers 
(Ra,) are shown in Figs. 4-7. 

100 

F 

104 105 10" 

RaLl 
FIG. 4. Experimental data (points) for an equilateral triangle 
compared with the theoretical result. Solid line represents 
solution of the model with parallel stream lines and dashed 
line the solution of the model with concentric stream lines. 

FIG. 5. Experimental data (points) for square surface com- 
pared with the theoretical result. Solid line represents solu- 
tion of the model with parallel stream lines and dashed line 

the solution of the model with concentric stream lines. 

, 1 , , , , , N:_l.Sl~Ra~, , , ,,11 

104 105 106 

ROD 

FIG. 6. Experimental data (points) for a regular hexagonal 
surface compared with the theoretical result. Solid line rep- 
resents solution of the model with parallel stream lines and 
dashed line the solution of the model with concentric stream 

lines. 

Recalculation of experimental results with the use 
of the diameter of the circle inscribed in polygon (d) 
as the characteristic length, leads to correlation : 

NM d = 1.337.Ra”‘. d (42) 

This relation, as can be seen from Fig. 8, is valid 
for all shapes of plates tested. 
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FIG. 7. Experimental data (points) for a round surface com- 
pared with the theoretical result (line). 

105 

Rad 

FIG. 8 Experimental results recalculated with the use of 
diameter of the circle inscribed in polygon (d) as the charac- 

teristic linear dimension. 

Experimental results (points) plotted in the form of 
C, = NK,/Ru$~ (Fig. 9(a)) or C, = Nu,/RuJ’~ (Fig. 
9(b)) vs E were compared with the analytical solution 
of the parallel model (17) (solid lines) and of the 
concentric model of the flow pattern (27) (dashed 
lines) in Fig. 9. 

1.0 2 

0 20 40 60 80 100 120 

FIG. 9. Comparison of the analytical solution of the parallel 
model (solid line) and the concentric model (dashed lines) 
with experimental results (points) ; (a) the diameter of the 
circle circumscribed on polygonal surface (0) is the charac- 
teristic linear dimension, (b) the diameter of the circle 

inscribed in polygonal surface (d) is the linear dimension. 

Table 1. 

Angle (shape) 

Model 

Parallel 
Concentric 
Experiment 

E = n/3 E = n/4 E = n/6 a-0 
(triangle) (square) (hexagon) (disk) 

1.620 1.410 1.301 1.228 
1.357 1.296 1.256 1.227 
1.760 1.512 1.515 1.267 

-._ 

In Table 1 comparison of solutions of models with 
parallel stream lines (18) and with concentric stream 
lines (25) in the form of C, = Nu,,/Ru#~, for tri- 
angular (E = n/3), square (E = n/4), hexagonal 
(E = x/6) and round plate (E + 0), together with exper- 
imental results have been presented. 

In Table 2 theoretical results and experimental data 
recalculated, according to relation (27) with the use 
of the diameter (d> of the circle inscribed, as charac- 
teristic linear dimension, have been presented as 
C, = Nu,/RaliS. 

RESULTS OF VISUALIZATION OF NATURAL 

CONVECTION FROM POLYGONS 

Results of visual research were obtained on hori- 
zontal isothermal hexagonal, square and triangular 
plates. All tested plates were of the same diameter 
d = 0.07 m of the circle inscribed in them. From many 
photographs of heat fluxes, the cases of Q = 16.5 W 
(Fig. 10(a)) and of Q = 36.2 W (Fig. 10(b)) have been 
chosen as an example for presentation. 

CONCLUSIONS 

The suggested models of the free convective heat 
transfer from isothermal, horizontal plates of different 
shapes exhibit an agreement with results of ex- 
perimental investigations which cannot be only 
accidental. 

Theoretical and experimental results presented in 
this paper are in good agreement. 

From the analysis of visual experiments it is obvious 
that for the triangular plate the fluid flow is similar to 
that of the model of parallel flow pattern ; in the case 
of a square plate both models give results of nearly 
the same magnitude ; for a hexagon plate the model 

Table 2. 

Angle (shape) 

Model 

Parallel 
Concentric 
Experiment 

c = ai3 E = 1114 E = 7116 8=-O 
(triangle) (square) (hexagon) (disk) 

1.228 1.228 1.228 1.228 
1.028 1.128 1.186 1.221 
1.334 1.315 1.433 1.267 
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FIG. 10. Photographs of stream lines existing during the natural convection heat transfer experiment from 
horizontal isothermal triangle, square and hexagon, where heat fluxes are: (a) 16.5 W and (b) 36.2 W. 

Tested fluid is water. 

of concentric fluid motion seems to prevail over that pressed as velocity relation (2). It is probable, that for 
of the parallel model. the concentric model of the fluid flow the solution of 

The other comparison of theoretical and exper- velocity relation. obtained for cylindrical coordinates, 
imental results suggests that the real free convective would give results of better agreement with visual 
fluid flow above polygons follows a mechanism which experimental data. These data indicate that free con- 
is similar to that of the model of parallel stream lines. vective heat transfer is of complex nature and follows 

In this work the theoretical consideration is based, a mechanism which is between two boundary cases, 
for both models, on the solution of simplified Navier- concentric and parallel. 
Stokes equations obtained for plane flow and ex- Both proposed models and their simplified solu- 
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tions, are merely the first approximation to the real 
phenomenon. It is very likely that this study would 

inspire other investigators. The solution of the sim- 

ultaneous partial differential equations in cylindrical 
coordinates as well as further experimental studies 
would give more information and a better description 
of the phenomenon. 
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APPENDIX A 

Equation (14), given once more as (43) is a second order 
differential equation and its solution is based on two bound- 
ary conditions. 

432 * R’ 
S-d(6) *dd/d.r) = Ra.d.u. 

The first condition is an assumption that the solution is a 

family of exponential curves 

6 = &ax”. (44) 

The second boundary condition is : 

6 = 0 for .X = 0. (45) 

Differentiation of equation (44) leads to 

ds1d.x = 6, * n * Y- ’ (46) 

Introducing equation (46) into equation (43) one obtains 

6,,x”.d(6~..*‘“.6,,n.x”~‘) = __ 
432*R3.dX 

Ra ’ (47) 

(48) 

Differentiation of equation (48) leads to 

n*(4*n-l)*a~..u 5n-2 
432 * R’ 

=--r’ 
(49) 

The relation (49) is true for (n = 2/5) and 

6, = 
4.478. RI” 

Ra’l’ (50) 

(51) 

and next (6) is 

ST 4.478 * R’:’ .X2, 5 
&l/5 

APPENDIX B 

The case of pure concentric fluid flow takes place during 
free convective heat transfer process from a horizontal round 
plate. The solution of equation (20). based on this model 
case, is presented below. 

Equation (20) rewritten as equation (52) is : 

$g[r6’(-d6/dr)] = G (52) 

Using typical methods of solution of second order differ- 
ential equations the final result has not been obtained. For 
subsequent considerations one can assume, in pursuance of 
ref. [9]. that the mean increase of the boundary layer thick- 
ness along the path of its growth, equation (53), is constant. 

db d6 

dr dr - 
idem 

Introduction of equation (54) into equation (52) and 
differentiation of equation (52) 

yields to the first order differential equation and next to 

6 _ r r.36’.g+,j3 1 = -K 

or 

36$+c= -K. 
r 

(54) 

(56) 

The equation (56) is a non-homogeneous differential 
equation 

?!+;= -1 

where 

u = h4jK. (58) 

The solution of equation (57) for round plate with fol- 
lowing boundary condition (for r = R (leading edge) 6 = 0 
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and I( = 0) is 

4 (R7’9_r7’q ) 
a=--’ 

7 r4/9 (59) 

and next 

where 

3.964. R”’ 
A= Rat!4 (61) 

The value of the coefficient (F) may, however, be deter- 
mined according to its definition (53) from differentiation of 
equation (60) 

rd& (62) 

Since r d6 = d(r6) -6 dr, equation (62) is 

2A 
F=-----. 

s 

R (RT!’ _,7i3)114 

F”J.RZ o 
-._-.~~ &.. 

r 113 (63) 

The value of the integer in equation (63) is 

s R (R1~‘_r7”)“’ 

p;y---- dr = 1.378 * RZ ‘. 
0 

(64) 

Substitution of equations (64) and (61) into equation (63) 
gives 

F”4 _ 1.613 
RI’“” 

The thickness of the boundary layer may be determined 
from substitution of equations (65) and (61) into equation 

(60) 

6 =2,454.~?,4.(R7!9_~7’9)1,4 

Ral 5.+1 ~. (66) 

This solution based on the model of concentric fluid flow 
on the round horizontal plate, where R = const., has to 
be modified because of the triangular surface considered 
R = RI # constant (Fig. 3). 


